Module Diabetes-Detection-Web-Application.testing.src.preprocessing.plots
Expand source code
# import global libraries
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
class Plot:
def __init__(self, data, path):
self.data = data
self.path = path
self.hist_observation()
self.heatmap()
def hist_observation(self):
fig, ax = plt.subplots()
self.data[['Insulin', 'Glucose', 'BloodPressure',]].hist(bins=30, figsize=(1500,1000), ax=ax)
fig.savefig("{}/histogram.png".format(self.path))
def heatmap(self):
fig, ax = plt.subplots()
d = self.data[['Pregnancies', 'Glucose', 'BloodPressure',
'SkinThickness', 'Insulin',
'BMI', 'DiabetesPedigreeFunction', 'Age', 'Outcome']]
dataplot = sns.heatmap(d.corr(), annot=True, cmap="YlGnBu")
fig.savefig("{}/heatmap.png".format(self.path))
This File is our
Classes
class Plot-
Expand source code
# import global libraries import pandas as pd import matplotlib.pyplot as plt import seaborn as sns class Plot: def __init__(self, data, path): self.data = data self.path = path self.hist_observation() self.heatmap() def hist_observation(self): fig, ax = plt.subplots() self.data[['Insulin', 'Glucose', 'BloodPressure',]].hist(bins=30, figsize=(1500,1000), ax=ax) fig.savefig("{}/histogram.png".format(self.path)) def heatmap(self): fig, ax = plt.subplots() d = self.data[['Pregnancies', 'Glucose', 'BloodPressure', 'SkinThickness', 'Insulin', 'BMI', 'DiabetesPedigreeFunction', 'Age', 'Outcome']] dataplot = sns.heatmap(d.corr(), annot=True, cmap="YlGnBu") fig.savefig("{}/heatmap.png".format(self.path))Functions
def hist_observation(self)-
Expand source code
def hist_observation(self): fig, ax = plt.subplots() self.data[['Insulin', 'Glucose', 'BloodPressure',]].hist(bins=30, figsize=(1500,1000), ax=ax) fig.savefig("{}/histogram.png".format(self.path)) def heatmap(self)-
Expand source code
def heatmap(self): fig, ax = plt.subplots() d = self.data[['Pregnancies', 'Glucose', 'BloodPressure', 'SkinThickness', 'Insulin', 'BMI', 'DiabetesPedigreeFunction', 'Age', 'Outcome']] dataplot = sns.heatmap(d.corr(), annot=True, cmap="YlGnBu") fig.savefig("{}/heatmap.png".format(self.path))